首页> 外文OA文献 >A unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially-referenced data
【2h】

A unified framework for fitting Bayesian semiparametric models to arbitrarily censored survival data, including spatially-referenced data

机译:用于拟合贝叶斯半参数模型的统一框架   任意审查的生存数据,包括空间参考数据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A comprehensive, unified approach to modeling arbitrarily censored spatialsurvival data is presented for the three most commonly-used semiparametricmodels: proportional hazards, proportional odds, and accelerated failure time.Unlike many other approaches, all manner of censored survival times aresimultaneously accommodated including uncensored, interval censored,current-status, left and right censored, and mixtures of these. Left-truncateddata are also accommodated leading to models for time-dependent covariates.Both georeferenced (location exactly observed) and areally observed (locationknown up to a geographic unit such as a county) spatial locations are handled;formal variable selection makes model selection especially easy. Model fit isassessed with conditional Cox-Snell residual plots, and model choice is carriedout via LPML and DIC. Baseline survival is modeled with a novel transformedBernstein polynomial prior. All models are fit via a new function which callsefficient compiled C++ in the R package spBayesSurv. The methodology is broadlyillustrated with simulations and real data applications. An important findingis that proportional odds and accelerated failure time models often fitsignificantly better than the commonly-used proportional hazards model.Supplementary materials are available online.
机译:针对三种最常用的半参数模型(比例风险,比例赔率和加速故障时间),提供了一种全面,统一的方法来对任意删失的空间生存数据进行建模。审查,当前状态,左和右审查,以及这些的混合。还保留了左截断的数据,从而生成了与时间相关的协变量的模型。处理了地理参考(精确观察到的位置)和区域观察(已知到地理单位(例如县)的位置)的空间位置;形式变量选择使模型选择特别容易。使用条件Cox-Snell残差图评估模型拟合,并通过LPML和DIC进行模型选择。使用新的变换的Bernstein多项式先验模型模拟基线生存率。所有模型都通过一个新函数拟合,该函数调用R包spBayesSurv中的高效编译C ++。通过仿真和实际数据应用广泛地说明了该方法。一个重要的发现是,比例赔率和加速故障时间模型通常比常用的比例风险模型好得多。补充材料可在线获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号